The global Arnoldi process for solving the Sylvester-Observer equation
نویسندگان
چکیده
منابع مشابه
The global Arnoldi process for solving the Sylvester-Observer equation
In this paper, we present a method and associated theory for solving the multi-input Sylvester-Observer equation arising in the construction of the Luenberger observer in control theory. The proposed method is a particular generalization of the algorithm described by Datta and Saad in 1991 to the multi-output. We give some theoretical results and present some numerical experiments to show the a...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولGlobal conjugate gradient method for solving large general Sylvester matrix equation
In this paper, an iterative method is proposed for solving large general Sylvester matrix equation $AXB+CXD = E$, where $A in R^{ntimes n}$ , $C in R^{ntimes n}$ , $B in R^{stimes s}$ and $D in R^{stimes s}$ are given matrices and $X in R^{stimes s}$ is the unknown matrix. We present a global conjugate gradient (GL-CG) algo- rithm for solving linear system of equations with multiple right-han...
متن کاملOn the solving of matrix equation of Sylvester type
A solution of two problems related to the matrix equation of Sylvester type is given. In the first problem, the procedures for linear matrix inequalities are used to construct the solution of this equation. In the second problem, when a matrix is given which is not a solution of this equation, it is required to find such solution of the original equation, which most accurately approximates the ...
متن کاملA Parallel Algorithm for the Sylvester Observer Equation
We present a new algorithm for solving the Sylvester-Observer Equation: AX ? XH = (0;C). The algorithm embodies two main computational phases: the solution of a series of independent equation systems, and a series of matrix-matrix multiplications. The algorithm is, thus, well suited for parallel and high performance computing. By reducingthe coeecient matrix A to lower Hessenberg form, one can ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational & Applied Mathematics
سال: 2010
ISSN: 1807-0302
DOI: 10.1590/s1807-03022010000300012